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Abstract

A model for ground motion at a site resulting from finite-length ruptures
along a fault is analyzed. The model assumes that rupture length is a function of
earthquake magnitude, that ruptures occur with equal probability at all
allowable rupture locations, and that ground motion {(acceleration) at a site is a
function of the closest distance from the site to the causative rupture. Ruptures
must be wholly contained within the fault limits, in contrast with the model of
Der Kiureghian and Ang (1977) which permits a rupture to extend beyond the
fault by one-half the rupture length.

Equations are developed for determining the average frequency with which
ruptures along a fault will cause specified accelerations to be exceeded at a
given site. It is shown that rupture length plays a large reole in the exceedance
rates obtained and that minimum and maximum earthquake magnitudes and
overall fault length may also affect the values significantly. The eflects of
varying the parameters differ with site location and acceleration level.

The usual relationship between median rupture length and magnitude is
assumed, log{l)=a+bm. Tor each magnitude, rupture lengths are lognormally
distributed about the median value with standard deviation o,. Using "long"
(those corresponding, for example, to 1.50; ) versus "short" (-1.5g; ) rupture
lengths for each magnitude may change the calculated exceedances of an
acceleration by a factor of twenty or more. The expected number of
exceedances oblained by integrating over rupture length may, in many cases,
be approximated by using only a single rupture length per magnitude
corresponding to a mean rupture length (which may differ considerably from
the median length for the magnitude).

A series expansion permits acceleration exceedances to be separated into
"point source"” and "rupture length" contributions. For an Esteva attenuation of
the form loga=cj+cpm+calog R the first "point source’ term {assuming infinite
maximum magnitude) is equivalent to Cornell’s (1968) result for point sources
(zero-length ruptures) on infinite faults; this term may account for only a small
fraction of the total exceedances obtained when mean or median rupture
lengths are used. :

If accelerations are regarded as being lognormally distributed with standard
deviation o,, the expected exceedances calculated for a fixed acceleration at a
site may be significantly higher than those obtained when only the log-mean
acceleration is used for each magnitude and distance.

Calculated ground motion exceedance rates may differ by a factor of two cor
more at sites a few kilometers apart near the end of a fault, and fault location, if
not known exactly, should perhaps be treated probabilistically.



Iniroduction

Computer programs (Bender and Perkins, 1982, and McGuire 1578, 1578)
that have been used extensively for seismic hazard analysis and mapping
assume that earthquakes occur as points within source zones or as finite length
ruptures along faults. Tﬁis paper concerns only the latter situation, and
develops equations for the rupture model used. The analytic develcpment (as
contrasted with the numerical approach of the computer programs) facilitates
an examination of the model and enables a better understanding of the roles of
the varicus parameters and interactions between them.

The rupture model to be investigated is a line-rupture model, meaning
earthguakes occur as finite length breaks on a fault line. Acceleration at a site
resulting from a single rupture of a given magnitude and location is a function of
closest distance from the site to the rupture. This distance obviously is not
equivalent to epicentral or hypocentral distance, and authors who use the latter
rather than closest distance are in effect modeling point sources on a line.

Accelerations are evaluated using an attenuation relationship giving
acceleration as: a function of earthquake magnitude and distance. It does not
seem possible to use hypocentral distance and acijust the attenuation function
to take rupture length into account since, for example, in a rectangular
coordinate system, a linear rupture with hypocenter at (0,0) and end points at
(0,0), (X,0) would be at a clesest distance of zerc from a site at {X,0); a rupture
with the same hypocenter but having end points at (0,0), (-X,0) would be at
closest distance X from the same site. An attenuation relationship based on
hypocentral distance would not be able to distinguish between the two cases in
the example. For a magnitude 6.5 earthquake, a median rupture length given by

Bonilla and Buchanan (1970) was 28 km, representing a non-neglible difference



between possible hypocentral and closest distances.

Additionally, when acceleration resulting at a site from a rupture of finite
length on a fault is regarded as a function of closest distance from the site to
the rupture, a long rupture will tend to produée a higher acceleration at a site
than will a short rupture-. since the closest distance from a long segment to a
sllte is likely to be less than that from a shorter segment.

The model to be analyzed will henceforth be feferred to as the fcr or fault
contained rupture model; it will be compared with the fault rupture model of
Ang and Der Kiureghian (suggested by Ang, 1974, and expanded by Der
Kiureghian and Ang, 1975, 1977). In the fcr model, ruptures must be wholly
contained within the fault, whereas in the model of Der Kiureghian and Ang only
rupture centers must be located on the fault. It will be shown that, especially
for sites near the fault, either fault rupture mode] tends to give substantially
more exceedances of an acceleration level than does the model (Cornell, 1968)

in which earthquakes are regarded as point sources.

N
-~

Equations are developed in this paper for deterﬁinirg exceedance rates of
specified accelerations at a site using a general attenuation function and then
using a particular (Esteva, 1968) form, loga =¢,;+cym+cglog R. It will be shown
that rupture length, fault lengthy and earthquake magnitude range affect
acceleration exceedénce rates in a complicated manner depending on
acceleration level and site location relative to the fault. Some sample results
will be provided to illustrate the various effects and to compare models.

Model assumptions will first be listed, and then it will be shown how they are
implemented in two computer programs. This will help to introduce some of the

basic ideas, integrations, probability distributions, and geometry of the model.



Model Assumptions

Assumption 1. In an X-Y coordinate system, the fault is a single line segment of

length L, located on the X axis extending from (0,0) to (L,0). The site is located

at (X.P).

. Assumption 2. Rupture lengths are lognormally distributed as a function of

magnitude with standard deviation o;. (See, for example, Bonilla and Buchanan,

1870). 1f tile mean value of the log of the length of a rupture of a magnitude m
earthguake is
Inb,, =a+gm (1)

where b,, = break or rupture length

m =Richter magnitude,

a >0, g > 0 (constants),
the variation in In b,, is normally distributed with standard deviation o;. The
probability of a break of length b,; in the range

expla +g m+ fro;]Sb <expla+gm +{(fr+e)o] (2)
is the area under the normal probability integral

1 Ureley z?
PT(J’T)=7§;; S exp(- )dz (3)

2
Ifro 20

Assumption 3. A break of length b,, may with equal probability have its center

at any point (C,0) on the fault such that
b b
(T"‘.o) <(C.0)<(L ——é”‘-.o).

The break must be wholly contained within the fault, and so break length cannot
exceed fault length. [Ang’s model requires instead that the break be centered

on the fault: (0,0) £(C,0) (L ,0) with a maximum break length of 2L .]

Assumption 4. Peak acceleration (or velocity or some other measure of ground

motion) at the site (X,P) is a function of earthquake magnitude and closest
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distance from the break to the point. Accelerations for each magnitude are
distributed lognormally around the mean peak (log) value with standard

deviation o,.

Assumption 5. Earthguakes are restricted to occur in the magnitude range

MpS M STp,.y. Their density is the truncated negative exponential distribution:

[ ®exp[-b (m -mo)]
1-exp[~b (Mg~ mp)] for mogSmSm e

f(m)= (4)

0 elsewhere

Assumption 8. The mean occurrence rate r per year of earthquakes for

magnitudes in the range mg< m S, for the fault remains constant during

the time periods of interest.

Assumption"?. Farthquake occurrences have a Poisson distribution, that is, the

probability of exactly k occurrences during time period { is

plk) = (rt)* ezf(-—-r t)

where = average rate per unit time.

Note that earthqualces are regarded as independent events; the fact that an
earthquake did or did not occur at a specific time has no influence on
subsequent earthquake arrivals.

Assumptions 1-8 are used to determine the yearly rate of exceedance
Pez(a;) of specified levels of ground motion a; at a site. Given Pex(a;), from
assumption 7, the probability that no earthquake occurring on the fault during a
period of { years will produce an acceleration a 2 g; is

P(a < a;)=exp[—-Pez(a;)t] (5)
and the probability that one or more earthquakes will produce an acceleration
aza;is Pa 2a;)=1-exp[~Pex{a;)t].

The computer program for seismic hazard evaluation, SEISRISK Il (Bender
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and Perkins, 1982), finds accelerations that have specified probabilities of being
exceeded during given f-year time periods. The seismic hazard program, FRISK
(McGuire, 18978), determines instead accelerations corresponding to time

periods £ {which McGuire calls return periods) for which

— 1
~ 1-exp[-Pez(a;)]’

The computation of exceedance rates Pex{a;) of various accelerations a; in

each of the computer programs will be described briefly in the following section.
The programs differ in their approaches but yield consistent values of Pez (a;)

when the same parameter values and attenuation function are used.

Current Computational Procedures
Both computer programs permit a fault to be composed of several
connected straight-line segments, and allow contributions to Pez(a;) from a set
of faults to be summed.
1. FRISK {Mc Guire, 1978).
FRISK divides the magnitude range mySm £ My into a number (n,,4,) of

intervals Am apart, aﬁd assumes that all earthquakes for which

Am Am .
mj--—2—§m<mj+—2—- (15] én,,mg)

occur at 7y, the midpoint of the 7 interval. A set of (n) rupture length are

th

selected for each magnitude so that the i** length for the m* magnitude:

bm, = exp(a +g my + f101) (8)

(frico <fi <frem) .

occurs with probability p;, where

f"¢

1 __za Ryt
. o= —)d and i = 1. 7
P *\75:1;{:’81?( > )dz o igp‘ (7

Ruptures of length bm’(i) have their centers at each of n evenly spaced

locations Al apart on the fault at distances along the fault

"



bm (1) by (1) by, (1)
y 4 my _
5 ) +Al, 2 +2AL..... L

with probability ;11— for each location.

Since all n locations for each magnitude and rupture length are equally

likely, the fractional seismicity associated with a single rupture bmj(i) is

Py P

[bmy ()] =242 ®)
where (from equation 4)
exp[~b (m, = m))[exp(25T) — exp(~ 2]
p(G) = (9)

1- exp[—b (M mux —mo)]
= probability of an earthquake in the j™* magnitude interval.

The closest distance from one segment bm’,(i) to the site is determined and
the mean acceleration for a magnitude m earthquake at that distance is
computed from an assumed functional relationship between acceleration,
earthquake magnitude and distance from site to source. If a, is the calculated
mean log acceleration, the probability that the actual acceleration will exceed

the value ag is (by model assumption 4),

Qpo—ay

prazag)=9p'[ ] (10)

Oq

where

o' (w)= s fexp(“Z )z (11)
(2w)% 2
= the complement of the standardized normal distribution.
The probability that an earthquake in the range my<m <m ., produces an
acceleration a Zagy at (X,P) then is the probability that a 2ap, given that a
particular break location, break length and earthquake magnitude occur,

weighted by the probability of that occurrence and summed over all cases.

e on

Ponag
prla 2ag]= mzzl (gl '§1p'r[a Zap|my, bmj(‘i.k ). S(bmj(‘i))] (12)



where bmj(i.k)z'i"‘ break length for magnitude my at k? rupture location

bm (i)

(rupture center on fault at distance + (k—1) Al from end).

The annual exceedance rate Per(a;) then is pr[a 2a;] multiplied by the
annual rate of earthquakes in the range mpyS=m Smp,,. FRISK calculates
Pez (a‘-) for a selected set of a; and interpolates to find the accelerations for the

desired return periods.

ap—ay

In using the program for hazard mapping, calculating ¢"'[ ] for each

a
break for each magnitude is quite time consuming. The interpolation may be
poor if the selected a; are too far from the solution values.  Choosing a small
but efficient set of a; may be dvifﬁcult if a large geographical area is mapped and
accelerations vary widely. Choosing a large set of a; can result in wasted
computation. These difficulties are largely avoided in the second program,
which builds a histogram of acceleration occurrences at a site and then

determines acceleration exceedances using the histogram.

Il. SEISRISK 1l (Bender and Perkins, 1982)

In SEISRISK 1I (revised from the original undocumented program of S.T.
Algermissen and D.M. Perkins, 1972), a table of 100 acceleration values is
constructed such that the k™ entry a, represents accelerations in the range
a; 1= a <ag;. Associated with these g;'s are accumulators into which fractional
expected acceleration occurrences are summed. For a given magnitude,
acceleration a in the range a;_ySa <aq; will be produced only if the point of a
rupture closest to the site is within an appropriate distance range. Therefore,
for each magnitude used, distances that correspond to the acceleration
boundaries @; are determined (by interpolating in a table of acceleration as a
function of distance and magnitude). Let d;{j) = distance at which a magnitude

m; earthquake causes acceleration a,.

»



For a specified rupture midpoint on the fault and rupture length, there is a
unique closest distance from the rupture to the site. There may, therefore, be

an interval of length z[bm,(i)] along the fault such that ruptures with midpoints

in this interval are at distance di(j)<dsd,_y(j) from (X,P). The fraction of

T [bmj(i)]

—<——_  Summing over
L =y () ¢

reaks b, (1 lelding a;_y3a <a, en becomes
breaks b, (i) yield < then b

magnitude and rupture length gives the contribution to accelerations in the

range gy_15a <ax.

gt 2 [0 (8)]5 (b ()]
G = ,gx i=1 L *bmg(d.)

where s[bm’,(i)] was defined in equation 8.

(13)

Since the accelerations a; are mean values from a log normal distribution
with standard deviation o,, to account for acceleration variability each C, is
redistributed into the set of accumulators so that the fraction placed in the j'**
accumulator for accelerations a;_;'S a <a;' is proportional to an area under the

normal probability curve. Repeating for all ¥ gives the new entry G;"

n

: In(a,’) 2
1 e [-(z-W)]
¢ = c expt———X*71 gz 14
17 V2o, tz_—:1 kln(;(_l') 2o, ? (e

= (new) fractional earthquake occurrences in range a;_; Sa <g;'.
where
n,. = subscript corresponding to the maximum mean log

acceleration possible at (X,?)

_In(ag_y)+1In(a)
k= 2

= mean log acceleration for q;_y£a <a,;.

A yearly exceedance rate Pez(a;) of accelerations @ may be calculated

dirctly as
km
Pez(ax)=rate ), G (15)
J=k+1
where rate = expected total earthquakes in one year in the

Y



range moSm S Muyay
kmax = subscript corresponding to highest acceleration
after redistribution (k.2 74, ).

Note that because o, is treated as independent of magnitude and distance,
acclerations G may be "spread out” only after the acceleration histogram at
(X,P) has been completed. As a result, when earthquakes from a number of
sources produce accelerations at the site, SEISRISK II evaluates the normal
probability integral much less frequently than does FRISK, and the larger
number of accelerations at which Pez{q;) is computed reduces the interpolation
errors.

The two computer programs were run for a variety of parameter
combinations and geometries to investigate the properties of the fault-rupture
model. Both programs, however, are subject to some discretization error (from
treating a continuous distribution of magnitudes, rupture length and locations
as if they were concentrated at a set of distinct points) and the numerical
procedures cause a certain lack of smoothness in the results. These
inaccuracies complicate making sensitivity studies using the programs and
might cause us to attribute to the model properties that are really properties of
the approximations made.

In the analytic formulation, we shall be concerned principally with Ez{(a;),
exceedances of acceleration a, before acceleration variability is taken into
account, that is from equation 13, |

Ez(a,)=rate 12020 G@G).
J=k+1
We begin by developing the appropriate equations for Ez{a;) for the fault-

rupture model defined by model assumptions 1-6.

10



Analytic Development of Fault Rupture Equations
Integrals for acceleration exceedance rates at a site will be developed using
a general attenuation function a =f(m,R) in which acceleration at a site
increases with earthquake magnitude m and decreases with distance R from
the source. R is defined here as the distance from the site to the nearest point
or; the rupture.
If the nearest point on the rupture is at depth d with coordinates (Xg, 0. —d).

the distance to the site at (X,Y) is

R=V(X-Xp)2+Y2+d® (16)

This distance is identical to the distance from a surface rupture {d =0) to a
point at (X,P) where
P=Y?+d"
Because the attenuation function in this case involves only the equivalent of a
surface distance R, we shall hereafter, without loss of generality, assume the
site lies at {X,P). Define
R (m)=distance at which an earthquake of magnitude m
produces acceleration a, at (X,P).l
All ruptures on the fault of magnitude m earthquakes that have at least one
point closer to (X,P) than R {(rn) will produce accelerations greater than a;.

For each magnitudé in the range of permitted magnitudes mg<m £ Mnay,
the fraction of possible ruptures on the fault that will be closer than R;{m) to
(X,P) is sought. This fraction depends partly on rupture length, which is a
function of magnitude.

Since by model assumption 2, rupture lengths are lognormally distributed
for each magnitude, define rupture length for magnitude m as a function of

fr o, that is

b (f7 o) =exp(a +fr o) exp(g m)=H (fro;)exp(g m). (17)

11



We shall calculate the rate of accelerations exceeding a, using, initially, a
fixed value of fr in the rupture length-magnitude relationship; then we shall
integrate over f7r. Since fr o, is constant for the time being, we shall simplify
the notation by writing b,, =H exp(g m) for b, (fro)=H(fro;)exp(g m). H is
now a constant multiplicative factor which stretches or shrinks the rupture
fength around its log-mean value for each magnitude, depending on the choice
of fr. We first seek Ez(a;|H). the expected rate of exceedance of acceleration
a, at (X ,P) given H.

Two cases will be considered: the perpendicular from (X,P) intersects the
extended fault line {Y=0) beyond the end of the fault segment (X <0 or X >L);

or the perpendicular from (X,P) intersects the fault segment itself (0SX < L).

Case 1. X <0 (Site beyond end of fault.) (By symmetry X >L could equivalently
be considered.)

The point on the fault z;{m) that is at distance R (m) from (X,P) is the
solution to |

Ry(m)®=[zn{m)-X]*+P? (18)

or

o (m)=vVR(m)?-P2+X,
Because the distance from (X,P) to a point on the fault ({,0) increases as I
increases, all ruptures of magnitude m earthquakes that have their closest
endpoints at O0=<!<z;(m) will produce acceleration aza; at (X,P).

Equivalently, all ruptures with midpoints I = ;;,;54 on the fault for which

b b '
%sngl(m)wn—é"— (19)
will contribute to Ex{a,|H) (figure 1A).
There is a magnitude ,, below which a; will not be produced at (X.P)by a

rupture anywhere on the fault. This corresponds to z;{m,;) =0, and

R,(mlo)= VX2+P2.

12



Case 1. Site at (X,P) beyond end of fault, X <0.

b b
B. —<l<L >
Case 2. Site "above” fault, 0 X §§-.
R R
b b
92720772 4UL8A
L77 /////_ x L///////J
0 <—AX——->1<—————AX—"| L
™ L ~l
b b b ' b
—-Az - - SISX +Az + — ' D. — +Az + —
C. X-Az z_l X +Az > 2<l<XA:z 5
(X.,P)

Figure 1. Locations on a fault of centers of magnitude 7n earthquakes yielding
accelerations a 2a at (X,P). Fault extends on x-axis from z =0 to z=1. Ruptures of
megnitude 7n earthquakes centered on fault at z =1 will cause accelerations a = a; at
(X, P) as indicated.

R =R (m)= radius within which a magnitude 7 earthquake will produce
scceleration a 2 a, at (X,P).

Lyig = possible rupture-center locations on a fault of length I, of a magnitude m

b
earthquake of ruptures of length b = b,,, —g‘— Sl sSL - .

z;(m) = point(s) on fault intersected by a circle of radius R 1(m.) centered at (X,P).

Y
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Since magnitudes below g are not permitted, set
™Mo = max(mg,my, ). (21)
If m,> Moy, Where mua, is the maximum permitted magnitude, a; does
not occur at (X,P). Tberefore, we may assume M min < Mmax.
There is a magnitude m, above which all ruptures regardless of location on
the fault will yield a > a, (figure 1B). This is the magnitude m =m, for which
z,(m)=L —br{m) (22)
where br (n)=min(b,,, L)
(If rupture length b, as given by equation 17 would exceed fault length L,

rupture length is set equal to fault length). For mn =m,

L—br(ms)=vVRy(m.)2-P2% +X, (23)

(There is a unique Solution m, sihce both Ur{) and Ry(m) are nondecreasing

as 7 increases.)

Set
TN min My <mmjn
My =] Ty Mg SM, SMop,, (24)
mox TRnay < g .

The fraction of eartﬁquakes of magnitude 7n that yields a 2a, at (X,P) is :

0 m<mmm

le(m)z—-P2+X
L - H exp{gm)
1 My < S My

pr{e2za|H.m)=] Mmn S Sy, . (25)

Using equation 25 together with model assumptions 2 and 5 gives for X <0:

m

Ez{a,|H)=rate j'uf(m)pr(aZcxle,m): (286)

mo

,/Rx(m)ﬁ_P2+X ™ max
{mexp( bm) L —H explg m) dm + ;!;exp(—bm)dm

rate b exp(b mo)
1- exp[-ﬂ (mmu*'mo)]

= Iy + Iy

-

(Eitber integral may have a zero range of integration.)

14



Case 2. 0SX < _12; (Site "above" fault)
Let (X.?) be a site such that a perpendicular from the sile to the extended

fault line intersects the fault at some interior point. Assume O§X§%. (By

symmetry, % <X S L could equivalently be considered.) As in Case 1, we wish to

determine the fraction of the fault on which earthquakes producing
accelerations a 2 a; at (X,P) may originate.

Again let 7, = minimum magnitude at which a,; is felt at (X,P). This
corresponds to Ry(m;,) =P, and the point on the fault line that is at distance
R(my,) from (X, P) is at (X,0), that is, z;{m;,)=X. Let mu,=max{mg, my,).

For m =m,,, only ruptures on the fault intersecting (X,0)=[z;(my,).0] will

produce a; at (X,F). For magnitudes m >y, there will be two points z; (m)

and :z:lg(m) on the extended fault line for which

Rym)=VAz(m)?% + P? (27)
that is,

xl‘(m)=X~4z(m) and :z:la(m)=X+A:c(m)
for some Az {m).

For a magnitude 7n earthquake all ruptures with midpoints l,,;4 in the range

b b
X—Ax(m)————é—"—élmﬂ <X +Az(m)+ ——é"—
will contribute to exceedances of a,; at (X,P). However, since rupture length
canno} exceed fault length and ruptures are required to be wholly contained

within the fault [,;4 is further restricted to lie within

Byn Bon
g S L

or

mnx(X-Ax(m)——b—znl—. le)élm,'d Smin(X +Az (m)+ %m— L- gé—"—) (28)

Several cases must, therefore, be considered.

15



(a) Megnitudes . for which X — A;t(m)— bm 2 0.

For magnitudes n for which this holds, the fault is so long that even if the fault
were longer, any additional ruptures of length b,, would be too far away from the
site (X,P) to produce accelerations a 2 a; (figure 1C).

Let m,, be the magnitude for which equality holds X =Az(m)+b,,. Define
™My, 8s in equation 24. For m;,Sm smy,, all ruptures with midpoints [,,;; in

the range

b b
X—Az; —— Sl SX+Ar, + ——
2 2
will contribute to Ez(a,|H). This corresponds to a fraction of possible

magnitude m earthquakes

frimy= 221t (29)

giving for mmin M Sy,

2VR {(m)2-P2%+H exp{gm)
L ~ H exp(g m)

pr(azay, [H,m)= (30)

(b) Magnitudes m > my, for which X + Az(m)+ by, < L.
At these magnitudes, additional ruptures of length b, would contribute to
accelerations a >a; if the fault extended beyond ({0,0) in the negative x-

direction. Adding fault length beyond (L, 0) in the positive x-direction would not

increase the possible ruptures that produce a 2a; at {X,P). (Recall Xé—g-,

figure 1D). Let m, be the magnitude for which L —X =Az (m,2) + by -
2

(fm,a?_m,1 since I, — X =X based on the assumption that X < -Izi)

Define my,, as in eguation 24. For m, <m Sm,_, all magnitude m ruptures for
23 1 2 p

which

bm

b
—é”isz,,,w <X +Az{m)+ >

16



will contribute for a fraction
frim)=Xozm) (31)
L - b,
giving for my, =m sy,

\/Rl(1n)a—P?‘+X

L — H exp(g m)

Pr{(azay|H,m)= (32)
(c) Magnitudes 7y, S SN oy

All earthquakes regardless of their location on the fault will contribute to
exceedances of a; (figure 1E).

For MMy, ST S Mgy

Pr{(azay|H,m)=1. (33)

Combining these results yields, for 0SX £ —!'2-.

Ty

b rate exp{b mg) 2v/R ()2~ P2%+ H exp(g m)

o D = T s e T i, S ™ T LoHetgmy O™
=
: VR PRy e
+ ”{:xex;')(—-b m) L —H explg m) + "{e exp(—bd m )dm (34)

= I, + I, + on -

1

Equations 26 and 34 are the general fault-rupture equations.

A closer examination of these equations for Ex(a,]H) will provide some insight
into the efflect of rmagnitude limits m,, m,, and mpu,y and the role of fault
length, break length and site location. Along with the general results, we shall
note some specific properties of the model when the widely used Esteva (1969)
attenuation relationship for (log) acceleration as a function of distance and
magnitude is used to define R;(m). We shall use the form

Inea=c;+cgm+cglnR; ¢;>0, c2>0, c3<0. (35)

In this case,

17



1

c c c
Ry(m)=a; Fexp(- = Zm). (36)

(1) Minimum magnitude, mg.

The choice of my may significantly affect the exceedance rate of some
accelerations. If m,, the minimum magnitude yielding acceleration a; at (X,P)
is less than 7, the minimum assumed, then including additional earthquakes in
the range m,;, S <my will increase the exceedances of a; by an amount equal
to the change in Ez(ay|H) resulting when m_y,=m,, rather than m;,=mg is
used as the lower limit of integration in equations 28 and 34. Loss of
acceleration exceedances due to minimum magnitude cutoff should be
suspected when a magnitude less than mp will produce accelerations greater
than the acceleration of interest for some possible site-to-source distances.

More importantly, even when the minimum magnitude cutoff does not cause

loss of acceleration exceedances at levels of interest when a single acceleration

is assigned to each magnitude and distance, it may do so when acceleration

variability is taken into account. If a lognormal distribution of acceleration with
standard deviation ‘g, is assumed, accelerations are in effect "spread out”
around their (log) mean values. Since there may be fewer accelerations a <a;
to redist;ibute when magnitudes below my are eliminated, ignoring these
magnitudes may reduce the rate (after redistribution) of some accelerations
a>aj.

For some reasonable values of c;,c, and cg in the Esteva attenuation
(equation 35), using m =4.5 as opposed to m =3.0 (where the rate for
earthguakes with magnitudes m > 4.5 remains the same in both cases) changes
the frequency of accelerations up to .2g at distances of 10-20 km from the fault.
The diﬁe;ence is greater when acceleration variability is taken into account

than when only (log) mean values are used (figure 2).
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Figure 2. Acceleration exceedances at a site 10 km from the center of a 400 km fault
when magnitudes are restricted to the range 4.5 <7 £7.5 and when additional magni-
tudes 3.05m < 4.5 are also included. Acceleration variability o, =.8

Attenuation function lna =3.4+.89m - 1.17InR;

rale=.1 earthquakes per year in the range 4.5 £7.5; b=2.

(2) my or (my, ): nllagnitude above which all ruptures occurring anywhere on
the fault will yield acceleration a >a; at (X, P) for H fixed.
The fraction fr{m) of magnitude m earthquakes that contributes to
acceleration a; increases steadily with magnitude in the range
0L fr(m)<l My S m<my
and remains constant |

frim)=1 M ST STNmax (37)

where

for site at (X,P), X <0,or X>L
m; =
7 my, for site at (X.P), 0sX<sL.
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Thus for fixed My, 8nd My 88 My decreases the fraction of earthgquakes
Moty ST S M,y that cause acceleration a; to be exceeded at (X,P) increases.
But the value of 7y depends upon rupture length, site location, acceleration
level and fault length. An understanding of the roles of each of these
parameters will help make clear certain behaviors of the model.

(8) Ez(a,|H) as a function of fault length and of the x-coordinate of site

location.

Consider sites at (0,P) and (%.P) at distance P perpendicular to the end to
the center of the fault, respectively. The same minimum magnitude 7 g;, will
produce acceleration a,; at both these sites. Yet Ez(a,;|{H) at (—‘g—,P) may be

(perhaps considerably) more than twice the value of Ex{a; |H) at (0,P) or even
equal to it, depending on fault length L and acceleration a; {(figure 3).
To see this, note that if the fault is sufficiently long, the entire contribution

to :’!I‘z:(a;ihf)(_li

L p) is from integral 7, and to Ez{a;|H )(op) is from integral Iy, in

equation 34, yielding

E-’C(allH)(g p)Z REz(ay|H)o.r) (38)
L
(Equality holds only at H =0, that is for point sources or zero-length ruptures.)
On the other hand, the acceleration a; and fault length may be such that the

entire contribution to the exceedances of a; at both sites is from the integral

T . In this case,

EI(ale)(LP)=EI(a: | H )o.p) (39)
2
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Figure 3. Relative acceleration exceedances at sites 30 km from the center and 30 km
from the end of faults 100 and 400 km long; 4.0sm =8.5; b=2.

(b) Acceleration exceedances as a function of P (perpendicular distance) of the
site from the fault and fixed my, (for the Esteva attenuation.)

For two sites with the same X-coordinate and different P, (X, P;) and (X, P,),
let m,, (fixed) be the lowest magnitude producing acceleration a; at {X,P,;) and
az at (X,Pz). We shall show that if P2> P,, a higher fraction of the earthquakes

in the range 7y, < <, contributes to Ez(a, ’H)(X'pl) than contributes to

Ez(az|H)y,.p,) For the Esteva attenuation, a; is the acceleration for which

Ing; =c;+ cgmny, + c3ln Py, 1=1,2. (40)

and for a rupture at distance R; = k& P;, where k = a constant, a; is produced by

the magnitude 7y for which
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Ina;=cy+ camy +cgln(k Py) i=1,2

c
from which it follows that —-Eilnk =7ny —my,1=1,2 Therefore, ;= » and d;,
4

the length of fault on which magnitude m; earthquekes will produce acceleration
a; at (X, P;) is
=R E= PR (@)

Hence a larger fraction of earthquakes at magnitudes m;, <m will cohtribute to
Ez(ay|H)wp, than to Ez{az|H)x.p, and for a fixed magnitude range, the
more distant site is affected by earthquakes along a higher fraction of the fault
(figure 4).
(3) Maximum magnitude m max

Because high accelerations can result from high magnitude earthguakes,
uncertainty in specifying the "true" m,,, has been of considerable concern in
risk analysis. We shall assume the rate of earthquake occurrences remains fixed
for m, S Mmp.(0old) and investigate the effect of adding additional earthquakes in

the range mpy,.(old }¢m S m(new). That is, we shall assume

b exp[-b{(m—mg)]
<m <
T= explb (mmua(old) )] 7% 10T ToSTE Mmerlnow)
f{m)=
0 elsewhere

The precise effect of mp.y on exceedances of a given acceleration at a
particular site can be determined by adjusting the integration limits involving
TN ax and possibly m,,, Ty, Ty, in equation 26 or 34 and evaluating the integrals
for the respective values. As illustrated in figure 5A and 5B, the relative eﬂ'e;ét of
changing m, ., on the exceedances of a givén acceleration level is not the same
at different sites. The relative effect on different accelerations at the same site
is also non-uniform (figure 5C). We shall give a heurisﬁc argument why this is so.

The highest acceleration a,., possible at a site is produced by a magnitude

. €arthquake in which the rupture overlaps the point on the fault closest to
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Figure 4. Acceleration exceedances as a function of 77, P.
™y, = lowest magnitude that produces acceleration a, at (X,.P); Mumax="7.5.

In this example, an Esteva attenuation, Ina, =c;+cmy, + c3InP is used; the site is at
{200,P); the fault extends from (0,0) --(400,0). For my, fixed, the same magnitude range
TNy ST S Ty yields more exceedances of ay as P increases, or the site is affected by
more earthquakes along the fault in a given magnitude range as the perpendicular dis-
tance from the site to the fault increases.

the site. In this case, Mgy = Mnpax Occurrences of accelerations neér @ nex Will
obviously be greatly aflected by small changes in my,,. However, if an
acceleration ay is considerably less than @max, then mpy, is considerably less
than . and changing m,,,y by a small amount will have little effect on the

exceedances of a;. That is, if ., (new) is such that

_ M max(New) = Mmas(old )
T Mpe(old) = Mg

<1,
even including all the additional earthquakes at magnitudes

M max(01d )< TN EMmax(new) does not substantially affect the exceedances of a,,
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Figure 5. Acceleration exceedances as a function of maximum magnitude.
A, B: Exceedances of .1g and .5 g for sites at varying perpendicular distances P from the

center of a 400 km fault.

C: Exceedances of various acceleration levels at a site 30 km. from the center of the

fault.
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since earthquake occurrences decrease exponentially with magnitude and the
large number at lower magnitudes {near n,y,) will dominate. However, as mp,
increases {(corresponding at a fixed site Fo a higher a,), small absolute changes
in T .0 become larger fractional changes in 7 and cause correspondingly larger
fractional changes in Ex{ay | H).

Now let a; =a..{old) at a site. We shall look at how exceedances of a,
change when m e {new) = m (old) + Am at sites at (-g-,P) and (0,P).

Using equations 28 and 34, the incremental exceedances AEz(a;|H)
resulting from earthquakes in the range my,(old)<m <m g (new) is

approximated by

[2Ad + H exp(gm )] Am

]
: ) L — H exp(g m)
AE::(a,lH)(%J,):mm 0 (42)
Q Ad Am
L — H exp{g m)
AEI(Q.; IH)(o’p)=mi.n Q (43)
=rateexp[~b (m—mo)]‘ Ad:\/Rl(m)a—-Pz. (44)

1- exp[-b(m~my)]
Since Ri[mpefold)]=F Ad is small when Am is small and the "break length

term” H exp(g m ) may contribute most of the exceedances of a; at (‘Lé—,P )- This

term vanishes for a site at {0,P). Thus at the highest accelerations possible at
(X.P) the incremental absolute effect of a small change Am in maximum
magnitude may depend upon rupture length and site location.

Some additional remarks may be made when the Esteva attenuation
function, (equation 35) is used. In this case, the maximum acceleration possible
at (X,P) increases exponentially with m_,,. Now a_,, is that value of a for

which

Inaay=cy+CaMmpatcginCD , (45)
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where

L
P 0$X§2

CD=\VPTsx® o<
and
amax(new) = amu(()ld) exp[cz(mmaz(nm) "mmu(Old) )] . (46)

If the acceleration range at a site is defined as

AT = Qpax— Ao (47)
where
lnag=cy+czmg+c3lnCDhD, (48)
for sites at (X,P;) and (X,P;)

Qmeax(X.P,) Qmax(X.P,)

(49)
Qo(x.p,) Qo (x.Py)

Because the maximum acceleration possible at the site decreases as P
increases, the acceleration range becomes smaller as P increases. It follows
that the eflect of maximum magnitude on acceleration a; at (X, P) depends

upon where in the acceleration range aj lies for that site.

(4) Fault length.

Let the earthquake rate r per year per kilometer of fault be fixed. If the
fault is short enough, adding fault length will increase the number of
earthquakes that may be felt and hence increase the rate of exceedance of most
accelerations at a site. Beyond some point, in this model, however, adding fault
length will actually cause the exceedances calculated to decrease (to some
limit). The length at which acceleration exceedances begin to decrease de.p‘ends
upon the site location, attenuation function, acceleration level and other
parameters. The role of fault length may be explained as follows:

Consider faults of length L and length k L, where k > 1. Let the faults extend

from (0,0)—(L.0) and (0,0)-(k L,0) respectively. For simplicity assume the site

is either at (0,P), above the end of the fault, or above the midpoint at (%P) or
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kL
=2 P

If the integral /,; does not contribute to Ex{a(|H ), the only quantities that
change in equation 34 when fault length is increased are those involving fault
length and rate, and since

7L S Tkl
L — H exp(g m) kL —Hexp(g m)

where 7 =earthquake rate per unit of fault length

r L (or 7 k L) = total earthquakes along fault (of length L of k L),
the shorter fault will yield more exceedances of a; at (X, P) than will the longer
fault.

On the other hand, if for both faults all earthquakes contribute to Ex(a, |H)
regardless of location (the only integral involved in both cases is fg;), then
ruptures on the longer fault will produce ¥ times as many exceedances of a, at
(X.P) as will those on the shorter fauit.

Figure BA illustrates a case in which there are more exceedances of
accelerations at all levels at a site near the center a short (100 km) fault than
near the center of a longer (400 km) fault having thc same rate of earthquakes
per unit length. The situation is clearly reversed at a site further away (at a
greater distance P) from the center of the fault. Figure 6B illustrates
exceedances of a fixed acceleration at a site as a function of fault length where,

again, earthquake rate per unit length is constant.
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Figure 6. Acceleration exceedances as a function of fault length when earthquake rate
per unit length remains constant.
A: Sites 10 km and 100 km from the centers of faults 100 kin and 400 ki long.
B: Relative exceedances of .05 g at sites 100 km and of .5 g at sites 10 km from the
centers of faults that vary in length from 20 km to 1000 km.

(5) Rupture Length.

Rupture lengths for three magnitude rupture length relationships (for a log
normal distribution with standard deviation o; = 1.20) are illustrated in Table 1.
For each relationship, a great variation in length may be seen particularly at
bhigher magnitudes between the longest and shortest ruptures for each
magnitude. |

Recall that the analysis thus far (equations 26 and 34) has assumed a
constant value of f7

H=H(fro)=expla + fr o)
and that fr is a stretching factor--ruptures become longer at each.magnitude

as fr increases. Recall also that given fr, mj(fr 0,) is the magnitude above
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Table 1.--Typical rupture lengths when variability is included ir three magnituce-rupture
length relationships. The standard deviation given by Bonilla and Buchanan (1970)
o, =1.20 is used for all three relationships. F7 =0 corresponds to the mediar rupture
length. The other rupture lengths are those for fr =+1, +2 correspording to lengths
between the “short” (—20,) and "long" (+20;) exiremes.

- .

L mag _| -2.0 -1.0 0.0 1.0 2.0

4.0 0.3 0.9 3.0 9.8 32.4
4.5 0.4 1.4 4.6 15.3 50.8
5.0 0.7 2.2 7.2 24.0 79.4
5.5 1.0 3.4 11.3 37.5 124.3
6.0 1.6 5.4 17.7 58.7 194.5
6.5 2.5 8.4 27.8 91.9 304.4
7.0 4.0 | 13.1 43.5 | 143.9 476.4
7.5 6.2 | 20.5 68.0 | 225.2 745.8
8.0 9.7 | 32.1 | 106.4 | 352.4 | 1166.8
8.5 156.2 ) 50.3 | 166.5_| 551.4 | 1826.0
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A. Bonilla and Buchanan (1970) fit for world-wide surface faulting
(used extensively by McGuire)
In(l)=-2.498+.896m + 1.20 fr; (log,p(I)=-1.085+.389m + .52 f1)

fr

| mag_ &~ .:2_(_) J _'l'.g_.. S _9._0_ L - _1'_0_. 4+ - _._2'_0 _____
4.0 0.3 1.1 3.5 11.6 383 | k
4.5 0.6 1.9 6.2 20.5 68.0 i
5.0 1.0 3.3 11.¢ 36.5 120.9 1
5.5 1.8 5.9 18.6 64.9 214.9 o
6.0 3.2 10.5 34.8 116.3 381.7 {m
6.5 5.6 18.7 61.9 204.9 678.4 e
7.0 10.G 33.2 | 109.9 364.1 | 1205.5 t
7.5 17.8 £0.0 | 1951 6147.0 | 2142.4 e
8.0 31.7 | 104.9 | 347.2 | 11498 | 38073 | r

| 8.5_]56.3 | 186.4_| 617.1_| 2043.3 | 6766.2 | s_

B. A relationship used (with f7=0) by Der Kiureghian and Ang, 1977, in their

risk analysis In(l)=-3.350+1.150m + 1.20 fr
Jr

mag {_ 20 1-101! 00| 101! 20/ _
4.0 C.C 0.1 .3 0.8 3.0 k
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